MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Ceramic‐Electrolyte Glucose Fuel Cell for Implantable Electronics

Author(s)
Simons, Philipp; Schenk, Steven A; Gysel, Marco A; Olbrich, Lorenz F; Rupp, Jennifer LM
Thumbnail
DownloadPublished version (1.908Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Next-generation implantable devices such as sensors, drug-delivery systems, and electroceuticals require efficient, reliable, and highly miniaturized power sources. Existing power sources such as the Li-I2 pacemaker battery exhibit limited scale-down potential without sacrificing capacity, and therefore, alternatives are needed to power miniaturized implants. This work shows that ceramic electrolytes can be used in potentially implantable glucose fuel cells with unprecedented miniaturization. Specifically, a ceramic glucose fuel cell-based on the proton-conducting electrolyte ceria-that is composed of a freestanding membrane of thickness below 400 nm and fully integrated into silicon for easy integration into bioelectronics is demonstrated. In contrast to polymeric membranes, all materials used are highly temperature stable, making thermal sterilization for implantation trivial. A peak power density of 43 µW cm-2 , and an unusually high statistical verification of successful fabrication and electrochemical function across 150 devices for open-circuit voltage and 12 devices for power density, enabled by a specifically designed testing apparatus and protocol, is demonstrated. The findings demonstrate that ceramic-based micro-glucose-fuel-cells constitute the smallest potentially implantable power sources to date and are viable options to power the next generation of highly miniaturized implantable medical devices.
Date issued
2022-06
URI
https://hdl.handle.net/1721.1/144156
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Advanced Materials
Publisher
Wiley
Citation
Simons, Philipp, Schenk, Steven A, Gysel, Marco A, Olbrich, Lorenz F and Rupp, Jennifer LM. 2022. "A Ceramic‐Electrolyte Glucose Fuel Cell for Implantable Electronics." Advanced Materials, 34 (24).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.