MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-Gaussianities in collider energy flux

Author(s)
Chen, Hao; Moult, Ian; Thaler, Jesse; Zhu, Hua X.
Thumbnail
Download13130_2022_Article_18795.pdf (20.23Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract The microscopic dynamics of particle collisions is imprinted into the statistical properties of asymptotic energy flux, much like the dynamics of inflation is imprinted into the cosmic microwave background. This energy flux is characterized by correlation functions E n → 1 ⋯ E n → k $$ \left\langle \mathcal{E}\left({\overrightarrow{n}}_1\right)\cdots \mathcal{E}\left({\overrightarrow{n}}_k\right)\right\rangle $$ of energy flow operators E n → $$ \mathcal{E}\left(\overrightarrow{n}\right) $$ . There has been significant recent progress in studying energy flux, including the calculation of multi-point correlation functions and their direct measurement inside high-energy jets at the Large Hadron Collider (LHC). In this paper, we build on these advances by defining a notion of “celestial non-gaussianity” as a ratio of the three-point function to a product of two-point functions. We show that this celestial non-gaussianity is under perturbative control within jets at the LHC, allowing us to cleanly access the non-gaussian interactions of quarks and gluons. We find good agreement between perturbative calculations of the non-gaussianity and a charged-particle-based analysis using CMS Open Data, and we observe a strong non-gaussianity peaked in the “flattened triangle” regime. The ability to robustly study three-point correlations is a significant step in advancing our understanding of jet substructure at the LHC. We anticipate that the celestial non-gaussianity, and its generalizations, will play an important role in the development of higher-order parton showers simulations and in the hunt for ever more subtle signals of potential new physics within jets.
Date issued
2022-07-26
URI
https://hdl.handle.net/1721.1/144162
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2022 Jul 26;2022(7):146
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.