MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive and Prescriptive Analytics Toward Passenger-Centric Ground Delay Programs

Author(s)
Jacquillat, Alexandre
Thumbnail
DownloadSubmitted version (2.485Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:p> Ground delay programs (GDPs) comprise the main interventions to optimize flight operations in congested air traffic networks. The core GDP objective is to minimize flight delays, but this may not result in optimal outcomes for passengers—especially with connecting itineraries. This paper proposes a novel passenger-centric optimization approach to GDPs by balancing flight and passenger delays in large-scale networks. For tractability, we decompose the problem using a rolling procedure, enabling the model’s implementation in manageable runtimes. Computational results based on real-world data suggest that our modeling and computational framework can reduce passenger delays significantly at small increases in flight delay costs through two main mechanisms: (i) delay allocation (delaying versus prioritizing flights) and (ii) delay introduction (holding flights to avoid passenger misconnections). In practice, however, passenger itineraries are unknown to air traffic managers; accordingly, we propose statistical learning models to predict passenger itineraries and optimize GDP operations accordingly. Results show that the proposed passenger-centric approach is highly robust to imperfect knowledge of passenger itineraries and can provide significant benefits even in the current decentralized environment based on collaborative decision making. </jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/144176
Department
Sloan School of Management
Journal
Transportation Science
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Citation
Jacquillat, Alexandre. 2022. "Predictive and Prescriptive Analytics Toward Passenger-Centric Ground Delay Programs." Transportation Science, 56 (2).
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.