MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The evolutionary origin of Bayesian heuristics and finite memory

Author(s)
Lo, Andrew W; Zhang, Ruixun
Thumbnail
DownloadPublished version (2.008Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Bayes' rule is a fundamental principle that has been applied across multiple disciplines. However, few studies have addressed its origin as a cognitive strategy or the underlying basis for generalization from a small sample. Using a simple binary choice model subject to natural selection, we derive Bayesian inference as an adaptive behavior under certain stochastic environments. Such behavior emerges purely through the forces of evolution, despite the fact that our population consists of mindless individuals without any ability to reason, act strategically, or accurately encode or infer environmental states probabilistically. In addition, three specific environments favor the emergence of finite memory-those that are Markov, nonstationary, and environments where sampling contains too little or too much information about local conditions. These results provide an explanation for several known phenomena in human cognition, including deviations from the optimal Bayesian strategy and finite memory beyond resource constraints.
Date issued
2021
URI
https://hdl.handle.net/1721.1/144200
Department
Sloan School of Management. Laboratory for Financial Engineering; Sloan School of Management; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
iScience
Publisher
Elsevier BV
Citation
Lo, Andrew W and Zhang, Ruixun. 2021. "The evolutionary origin of Bayesian heuristics and finite memory." iScience, 24 (8).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.