Show simple item record

dc.contributor.authorSiah, Kien Wei
dc.contributor.authorKelley, Nicholas W
dc.contributor.authorBallerstedt, Steffen
dc.contributor.authorHolzhauer, Björn
dc.contributor.authorLyu, Tianmeng
dc.contributor.authorMettler, David
dc.contributor.authorSun, Sophie
dc.contributor.authorWandel, Simon
dc.contributor.authorZhong, Yang
dc.contributor.authorZhou, Bin
dc.contributor.authorPan, Shifeng
dc.contributor.authorZhou, Yingyao
dc.contributor.authorLo, Andrew W
dc.date.accessioned2022-08-03T18:09:37Z
dc.date.available2022-08-03T18:09:37Z
dc.date.issued2021-08
dc.identifier.urihttps://hdl.handle.net/1721.1/144207
dc.description.abstractWe describe a novel collaboration between academia and industry, an in-house data science and artificial intelligence challenge held by Novartis to develop machine-learning models for predicting drug-development outcomes, building upon research at MIT using data from Informa as the starting point. With over 50 cross-functional teams from 25 Novartis offices around the world participating in the challenge, the domain expertise of these Novartis researchers was leveraged to create predictive models with greater sophistication. Ultimately, two winning teams developed models that outperformed the baseline MIT model-areas under the curve of 0.88 and 0.84 versus 0.78, respectively-through state-of-the-art machine-learning algorithms and the use of newly incorporated features and data. In addition to validating the variables shown to be associated with drug approval in the earlier MIT study, the challenge also provided new insights into the drivers of drug-development success and failure.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/j.patter.2021.100312en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceElsevieren_US
dc.titlePredicting drug approvals: The Novartis data science and artificial intelligence challengeen_US
dc.typeArticleen_US
dc.identifier.citationSiah, Kien Wei, Kelley, Nicholas W, Ballerstedt, Steffen, Holzhauer, Björn, Lyu, Tianmeng et al. 2021. "Predicting drug approvals: The Novartis data science and artificial intelligence challenge." Patterns, 2 (8).
dc.contributor.departmentSloan School of Management. Laboratory for Financial Engineering
dc.contributor.departmentSloan School of Management
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.relation.journalPatternsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-08-03T18:03:22Z
dspace.orderedauthorsSiah, KW; Kelley, NW; Ballerstedt, S; Holzhauer, B; Lyu, T; Mettler, D; Sun, S; Wandel, S; Zhong, Y; Zhou, B; Pan, S; Zhou, Y; Lo, AWen_US
dspace.date.submission2022-08-03T18:03:24Z
mit.journal.volume2en_US
mit.journal.issue8en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record