Show simple item record

dc.contributor.authorVentz, Steffen
dc.contributor.authorMazumder, Rahul
dc.contributor.authorTrippa, Lorenzo
dc.date.accessioned2022-08-04T15:12:54Z
dc.date.available2022-08-04T15:12:54Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/144217
dc.description.abstractWe introduce a statistical procedure that integrates datasets from multiple biomedical studies to predict patients' survival, based on individual clinical and genomic profiles. The proposed procedure accounts for potential differences in the relation between predictors and outcomes across studies, due to distinct patient populations, treatments and technologies to measure outcomes and biomarkers. These differences are modeled explicitly with study-specific parameters. We use hierarchical regularization to shrink the study-specific parameters towards each other and to borrow information across studies. The estimation of the study-specific parameters utilizes a similarity matrix, which summarizes differences and similarities of the relations between covariates and outcomes across studies. We illustrate the method in a simulation study and using a collection of gene expression datasets in ovarian cancer. We show that the proposed model increases the accuracy of survival predictions compared to alternative meta-analytic methods.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionof10.1111/BIOM.13517en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleIntegration of survival data from multiple studiesen_US
dc.typeArticleen_US
dc.identifier.citationVentz, Steffen, Mazumder, Rahul and Trippa, Lorenzo. 2021. "Integration of survival data from multiple studies." Biometrics.
dc.contributor.departmentSloan School of Management
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentStatistics and Data Science Center (Massachusetts Institute of Technology)
dc.relation.journalBiometricsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-08-04T15:04:22Z
dspace.orderedauthorsVentz, S; Mazumder, R; Trippa, Len_US
dspace.date.submission2022-08-04T15:04:24Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record