MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing long-term forecasting: Learning from COVID-19 models

Author(s)
Rahmandad, Hazhir; Xu, Ran; Ghaffarzadegan, Navid
Thumbnail
DownloadPublished version (1.264Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:p>While much effort has gone into building predictive models of the COVID-19 pandemic, some have argued that early exponential growth combined with the stochastic nature of epidemics make the long-term prediction of contagion trajectories impossible. We conduct two complementary studies to assess model features supporting better long-term predictions. First, we leverage the diverse models contributing to the CDC repository of COVID-19 USA death projections to identify factors associated with prediction accuracy across different projection horizons. We find that better long-term predictions correlate with: (1) capturing the physics of transmission (instead of using black-box models); (2) projecting human behavioral reactions to an evolving pandemic; and (3) resetting state variables to account for randomness not captured in the model before starting projection. Second, we introduce a very simple model, SEIRb, that incorporates these features, and few other nuances, offers informative predictions for as far as 20-weeks ahead, with accuracy comparable with the best models in the CDC set. Key to the long-term predictive power of multi-wave COVID-19 trajectories is capturing behavioral responses endogenously: balancing feedbacks where the perceived risk of death continuously changes transmission rates through the adoption and relaxation of various Non-Pharmaceutical Interventions (NPIs).</jats:p>
Date issued
2022-05
URI
https://hdl.handle.net/1721.1/144230
Department
Sloan School of Management
Journal
PLOS Computational Biology
Publisher
Public Library of Science (PLoS)
Citation
Rahmandad, Hazhir, Xu, Ran and Ghaffarzadegan, Navid. 2022. "Enhancing long-term forecasting: Learning from COVID-19 models." PLOS Computational Biology, 18 (5).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.