MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable spaces

Author(s)
Berdnikov, Aleksandr; Manin, Fedor
Thumbnail
Download222_2022_1118_ReferencePDF.pdf (828.2Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Scalable spaces are simply connected compact manifolds or finite complexes whose real cohomology algebra embeds in their algebra of (flat) differential forms. This is a rational homotopy invariant property and all scalable spaces are formal; indeed, scalability can be thought of as a metric version of formality. They are also characterized by particularly nice behavior from the point of view of quantitative homotopy theory. Among other results, we show that spaces which are formal but not scalable provide counterexamples to Gromov’s long-standing conjecture on distortion in higher homotopy groups.
Date issued
2022-05-09
URI
https://hdl.handle.net/1721.1/144239
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Berdnikov, Aleksandr and Manin, Fedor. 2022. "Scalable spaces."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.