Show simple item record

dc.contributor.authorBrennan, Michael C.
dc.contributor.authorHoward, Marylesa
dc.contributor.authorMarzouk, Youssef
dc.contributor.authorDresselhaus-Marais, Leora E.
dc.date.accessioned2022-08-19T12:59:19Z
dc.date.available2022-08-19T12:59:19Z
dc.date.issued2022-08-02
dc.identifier.urihttps://hdl.handle.net/1721.1/144366
dc.description.abstractAbstract We develop several inference methods to estimate the position of dislocations from images generated using dark-field X-ray microscopy (DFXM)—achieving superresolution accuracy and principled uncertainty quantification. Using the framework of Bayesian inference, we incorporate models of the DFXM contrast mechanism and detector measurement noise, along with initial position estimates, into a statistical model coupling DFXM images with the dislocation position of interest. We motivate several position estimation and uncertainty quantification algorithms based on this model. We then demonstrate the accuracy of our primary estimation algorithm on synthetic realistic DFXM images of edge dislocations in single-crystal aluminum. We conclude with a discussion of our methods’ impact on future dislocation studies and possible future research avenues.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10853-022-07465-5en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleAnalytical methods for superresolution dislocation identification in dark-field X-ray microscopyen_US
dc.typeArticleen_US
dc.identifier.citationBrennan, Michael C., Howard, Marylesa, Marzouk, Youssef and Dresselhaus-Marais, Leora E. 2022. "Analytical methods for superresolution dislocation identification in dark-field X-ray microscopy."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-08-18T03:35:59Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2022-08-18T03:35:59Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record