Show simple item record

dc.contributor.authorAndrews, Isaiah
dc.contributor.authorMikusheva, Anna
dc.date.accessioned2022-08-29T17:54:44Z
dc.date.available2022-08-29T17:54:44Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/145192
dc.description.abstract<jats:p>This paper studies optimal decision rules, including estimators and tests, for weakly identified GMM models. We derive the limit experiment for weakly identified GMM, and propose a theoretically‐motivated class of priors which give rise to quasi‐Bayes decision rules as a limiting case. Together with results in the previous literature, this establishes desirable properties for the quasi‐Bayes approach regardless of model identification status, and we recommend quasi‐Bayes for settings where identification is a concern. We further propose weighted average power‐optimal identification‐robust frequentist tests and confidence sets, and prove a Bernstein‐von Mises‐type result for the quasi‐Bayes posterior under weak identification.</jats:p>en_US
dc.language.isoen
dc.publisherThe Econometric Societyen_US
dc.relation.isversionof10.3982/ECTA18678en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleOptimal Decision Rules for Weak GMMen_US
dc.typeArticleen_US
dc.identifier.citationAndrews, Isaiah and Mikusheva, Anna. 2022. "Optimal Decision Rules for Weak GMM." Econometrica, 90 (2).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economics
dc.relation.journalEconometricaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-08-29T17:25:04Z
dspace.orderedauthorsAndrews, I; Mikusheva, Aen_US
dspace.date.submission2022-08-29T17:25:06Z
mit.journal.volume90en_US
mit.journal.issue2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record