Show simple item record

dc.contributor.authorQasim, Shah R.
dc.contributor.authorChernyavskaya, Nadezda
dc.contributor.authorKieseler, Jan
dc.contributor.authorLong, Kenneth
dc.contributor.authorViazlo, Oleksandr
dc.contributor.authorPierini, Maurizio
dc.contributor.authorNawaz, Raheel
dc.date.accessioned2022-09-06T13:46:13Z
dc.date.available2022-09-06T13:46:13Z
dc.date.issued2022-08-29
dc.identifier.urihttps://hdl.handle.net/1721.1/145257
dc.description.abstractAbstract We present an end-to-end reconstruction algorithm to build particle candidates from detector hits in next-generation granular calorimeters similar to that foreseen for the high-luminosity upgrade of the CMS detector. The algorithm exploits a distance-weighted graph neural network, trained with object condensation, a graph segmentation technique. Through a single-shot approach, the reconstruction task is paired with energy regression. We describe the reconstruction performance in terms of efficiency as well as in terms of energy resolution. In addition, we show the jet reconstruction performance of our method and discuss its inference computational cost. To our knowledge, this work is the first-ever example of single-shot calorimetric reconstruction of $${\mathcal {O}}(1000)$$ O ( 1000 ) particles in high-luminosity conditions with 200 pileup.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjc/s10052-022-10665-7en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleEnd-to-end multi-particle reconstruction in high occupancy imaging calorimeters with graph neural networksen_US
dc.typeArticleen_US
dc.identifier.citationThe European Physical Journal C. 2022 Aug 29;82(8):753en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-09-04T03:13:27Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-09-04T03:13:27Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record