MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Graph Signal Processing Techniques for Analyzing Aviation Disruptions

Author(s)
Li, Max Z; Gopalakrishnan, Karthik; Pantoja, Kristyn; Balakrishnan, Hamsa
Thumbnail
DownloadAccepted version (3.048Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:p> Understanding the characteristics of air-traffic delays and disruptions is critical for developing ways to mitigate their significant economic and environmental impacts. Conventional delay-performance metrics reflect only the magnitude of incurred flight delays at airports; in this work, we show that it is also important to characterize the spatial distribution of delays across a network of airports. We analyze graph-supported signals, leveraging techniques from spectral theory and graph-signal processing to compute analytical and simulation-driven bounds for identifying outliers in spatial distribution. We then apply these methods to the case of airport-delay networks and demonstrate the applicability of our methods by analyzing U.S. airport delays from 2008 through 2017. We also perform an airline-specific analysis, deriving insights into the delay dynamics of individual airline subnetworks. Through our analysis, we highlight key differences in delay dynamics between different types of disruptions, ranging from nor’easters and hurricanes to airport outages. We also examine delay interactions between airline subnetworks and the system-wide network and compile an inventory of outlier days that could guide future aviation operations and research. In doing so, we demonstrate how our approach can provide operational insights in an air-transportation setting. Our analysis provides a complementary metric to conventional aviation-delay benchmarks and aids airlines, traffic-flow managers, and transportation-system planners in quantifying off-nominal system performance. </jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/145271
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Transportation Science
Publisher
Institute for Operations Research and the Management Sciences (INFORMS)
Citation
Li, Max Z, Gopalakrishnan, Karthik, Pantoja, Kristyn and Balakrishnan, Hamsa. 2021. "Graph Signal Processing Techniques for Analyzing Aviation Disruptions." Transportation Science, 55 (3).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.