MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficiency and Fairness in Unmanned Air Traffic Flow Management

Author(s)
Chin, Christopher; Gopalakrishnan, Karthik; Egorov, Maxim; Evans, Antony; Balakrishnan, Hamsa
Thumbnail
DownloadAccepted version (5.630Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
IEEE As the demand for Unmanned Aircraft Systems (UAS) operations increases, UAS Traffic Flow Management (UTFM) initiatives are needed to mitigate congestion, and to ensure safety and efficiency. Congestion mitigation can be achieved by assigning airborne delays (through speed changes or path stretches) or ground delays (holds relative to the desired takeoff times) to aircraft. While the assignment of such delays may increase system efficiency, individual aircraft operators may be unfairly impacted. Dynamic traffic demand, variability in aircraft operator preferences, and differences in the market share of operators complicate the issue of fairness in UTFM. Our work considers the fairness of delay assignment in the context of UTFM. To this end, we formulate the UTFM problem with fairness and show through computational experiments that significant improvements in fairness can be attained at little cost to system efficiency. We demonstrate that when operators are not aligned in how they perceive or value fairness, there is a decrease in the overall fairness of the solution. We find that fairness decreases as the air-ground delay cost ratio increases and that it improves when the operator with dominant market share has a weak preference for the fairness of its allocated delays. Finally, we implemented UTFM in a rolling-horizon setting with dynamic traffic demand, and find that efficiency is adversely impacted. However, the impact on fairness is varied and depends on the metric used.
Date issued
2021
URI
https://hdl.handle.net/1721.1/145272
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
IEEE Transactions on Intelligent Transportation Systems
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Chin, Christopher, Gopalakrishnan, Karthik, Egorov, Maxim, Evans, Antony and Balakrishnan, Hamsa. 2021. "Efficiency and Fairness in Unmanned Air Traffic Flow Management." IEEE Transactions on Intelligent Transportation Systems, 22 (9).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.