MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reanalysis-driven simulations may overestimate persistent contrail formation by 100%–250%

Author(s)
Agarwal, Akshat; Meijer, Vincent R; Eastham, Sebastian D; Speth, Raymond L; Barrett, Steven RH
Thumbnail
DownloadPublished version (1.742Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>Model-based estimates of aviation’s climate impacts have found that contrails contribute 36%–81% of aviation’s instantaneous radiative forcing. These estimates depend on the accuracy of meteorological data provided by reanalyses like ECMWF Reanalysis 5th Generation (ERA5) and Modern Era Retrospective analysis for Research and Applications V2 (MERRA-2). Using data from 793 044 radiosondes, we find persistent contrails forming at cruise altitudes in 30° N–60° S are overestimated by factors of 2.0 and 3.5 for ERA5 and MERRA-2, respectively. Seasonal and inter-annual trends are well-reproduced by both models (R<jats:sup>2</jats:sup> = 0.79 and 0.74). We also find a contrail lifetime metric is overestimated by 17% in ERA5 and 45% in MERRA-2. Finally, the reanalyses incorrectly identify individual regions that could form persistent contrails 87% and 52% of the time, respectively. These results suggest that contrail models currently overestimate the number and lifetime of persistent contrails. Additional observations are needed for future models in order to provide locally accurate estimates of contrails or to support mitigation strategies.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/145280
Department
Massachusetts Institute of Technology. Laboratory for Aviation and the Environment; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Joint Program on the Science & Policy of Global Change
Journal
Environmental Research Letters
Publisher
IOP Publishing
Citation
Agarwal, Akshat, Meijer, Vincent R, Eastham, Sebastian D, Speth, Raymond L and Barrett, Steven RH. 2022. "Reanalysis-driven simulations may overestimate persistent contrail formation by 100%–250%." Environmental Research Letters, 17 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.