Show simple item record

dc.contributor.authorTian, Yulun
dc.contributor.authorChang, Yun
dc.contributor.authorHerrera Arias, Fernando
dc.contributor.authorNieto-Granda, Carlos
dc.contributor.authorHow, Jonathan
dc.contributor.authorCarlone, Luca
dc.date.accessioned2022-09-07T18:05:36Z
dc.date.available2022-09-07T18:05:36Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/145301
dc.description.abstractThis paper presents Kimera-Multi, the first multi-robot system that (i) is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures resulting from perceptual aliasing, (ii) is fully distributed and only relies on local (peer-to-peer) communication to achieve distributed localization and mapping, and (iii) builds a globally consistent metric-semantic 3D mesh model of the environment in real-time, where faces of the mesh are annotated with semantic labels. Kimera-Multi is implemented by a team of robots equipped with visual-inertial sensors. Each robot builds a local trajectory estimate and a local mesh using Kimera. When communication is available, robots initiate a distributed place recognition and robust pose graph optimization protocol based on a novel distributed graduated non-convexity algorithm. The proposed protocol allows the robots to improve their local trajectory estimates by leveraging inter-robot loop closures while being robust to outliers. Finally, each robot uses its improved trajectory estimate to correct the local mesh using mesh deformation techniques. We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots. Both real and simulated experiments involve long trajectories (e.g., up to 800 meters per robot). The experiments show that Kimera-Multi (i) outperforms the state of the art in terms of robustness and accuracy, (ii) achieves estimation errors comparable to a centralized SLAM system while being fully distributed, (iii) is parsimonious in terms of communication bandwidth, (iv) produces accurate metric-semantic 3D meshes, and (v) is modular and can be also used for standard 3D reconstruction (i.e., without semantic labels) or for trajectory estimation (i.e., without reconstructing a 3D mesh).en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/TRO.2021.3137751en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleKimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-Robot Systemsen_US
dc.typeArticleen_US
dc.identifier.citationTian, Yulun, Chang, Yun, Herrera Arias, Fernando, Nieto-Granda, Carlos, How, Jonathan et al. 2022. "Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for Multi-Robot Systems." IEEE Transactions on Robotics, 38 (4).
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systems
dc.relation.journalIEEE Transactions on Roboticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-09-07T17:56:54Z
dspace.orderedauthorsTian, Y; Chang, Y; Herrera Arias, F; Nieto-Granda, C; How, J; Carlone, Len_US
dspace.date.submission2022-09-07T17:57:01Z
mit.journal.volume38en_US
mit.journal.issue4en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record