MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The emission properties, structure and stability of ionic liquid menisci undergoing electrically assisted ion evaporation

Author(s)
Gallud, Ximo; Lozano, Paulo C
Thumbnail
DownloadAccepted version (3.234Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:p>The properties and structure of electrically stressed ionic liquid menisci experiencing ion evaporation are simulated using an electrohydrodynamic model with field-enhanced thermionic emission in steady state for an axially symmetric geometry. Solutions are explored as a function of the external background field, meniscus dimension, hydraulic impedance and liquid temperature. Statically stable solutions for emitting menisci are found to be constrained to a set of conditions: a minimum hydraulic impedance, a maximum current output and a narrow range of background fields that maximizes at menisci sizes of 0.5–3 <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022112021009885_inline4.png" /> <jats:tex-math>${\rm \mu}{\rm m}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in radius. Static stability is lost when the electric field adjacent to the electrode that holds the meniscus corresponds to an electric pressure that exceeds twice the surface tension stress of a sphere of the same size as the meniscus. Preliminary investigations suggest this limit to be universal, therefore, independent of most ionic liquid properties, reservoir pressure, hydraulic impedance or temperature and could explain the experimentally observed bifurcation of a steady ion source into two or more emission sites. Ohmic heating near the emission region increases the liquid temperature, which is found to be important to accurately describe stability boundaries. Temperature increase does not affect the current output when the hydraulic impedance is constant. This phenomenon is thought to be due to an improved interface charge relaxation enhanced by the higher electrical conductivity. Dissipated ohmic energy is mostly conducted to the electrode wall. The higher thermal diffusivity of the wall versus the liquid, allows the ion source to run in steady state without heating.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/145426
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Journal of Fluid Mechanics
Publisher
Cambridge University Press (CUP)
Citation
Gallud, Ximo and Lozano, Paulo C. 2022. "The emission properties, structure and stability of ionic liquid menisci undergoing electrically assisted ion evaporation." Journal of Fluid Mechanics, 933.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.