Show simple item record

dc.contributor.authorCoey, Chris
dc.contributor.authorKapelevich, Lea
dc.contributor.authorVielma, Juan P.
dc.date.accessioned2022-09-19T13:56:25Z
dc.date.available2022-09-19T13:56:25Z
dc.date.issued2022-09-17
dc.identifier.urihttps://hdl.handle.net/1721.1/145480
dc.description.abstractAbstract In recent work, we provide computational arguments for expanding the class of proper cones recognized by conic optimization solvers, to permit simpler, smaller, more natural conic formulations. We define an exotic cone as a proper cone for which we can implement a small set of tractable (i.e. fast, numerically stable, analytic) oracles for a logarithmically homogeneous self-concordant barrier for the cone or for its dual cone. Our extensible, open-source conic interior point solver, Hypatia, allows modeling and solving any conic problem over a Cartesian product of exotic cones. In this paper, we introduce Hypatia’s interior point algorithm, which generalizes that of Skajaa and Ye (Math. Program. 150(2):391–422, 2015) by handling exotic cones without tractable primal oracles. To improve iteration count and solve time in practice, we propose four enhancements to the interior point stepping procedure of Skajaa and Ye: (1) loosening the central path proximity conditions, (2) adjusting the directions using a third order directional derivative barrier oracle, (3) performing a backtracking search on a curve, and (4) combining the prediction and centering directions. We implement 23 useful exotic cones in Hypatia. We summarize the complexity of computing oracles for these cones and show that our new third order oracle is not a bottleneck. From 37 applied examples, we generate a diverse benchmark set of 379 problems. Our computational testing shows that each stepping enhancement improves Hypatia’s iteration count and solve time. Altogether, the enhancements reduce the geometric means of iteration count and solve time by over 80% and 70% respectively.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s12532-022-00226-0en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titlePerformance enhancements for a generic conic interior point algorithmen_US
dc.typeArticleen_US
dc.identifier.citationCoey, Chris, Kapelevich, Lea and Vielma, Juan P. 2022. "Performance enhancements for a generic conic interior point algorithm."
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-09-18T03:13:18Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-09-18T03:13:18Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record