MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing

Author(s)
Xue, Mantian; Mackin, Charles; Weng, Wei-Hung; Zhu, Jiadi; Luo, Yiyue; Luo, Shao-Xiong Lennon; Lu, Ang-Yu; Hempel, Marek; McVay, Elaine; Kong, Jing; Palacios, Tomás; ... Show more Show less
Thumbnail
DownloadPublished version (2.197Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Two-dimensional materials such as graphene have shown great promise as biosensors, but suffer from large device-to-device variation due to non-uniform material synthesis and device fabrication technologies. Here, we develop a robust bioelectronic sensing platform  composed of  more than 200 integrated sensing units, custom-built high-speed readout electronics, and machine learning inference that overcomes these challenges to achieve rapid, portable, and reliable measurements. The platform demonstrates reconfigurable multi-ion electrolyte sensing capability and provides highly sensitive, reversible, and real-time response for potassium, sodium, and calcium ions in complex solutions despite variations in device performance. A calibration method leveraging the sensor redundancy and device-to-device variation is also proposed, while a machine learning model trained with multi-dimensional information collected through the multiplexed sensor array is used to enhance the sensing system’s functionality and accuracy in ion classification.</jats:p>
Date issued
2022-08-27
URI
https://hdl.handle.net/1721.1/145510
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies
Journal
Nature Communications
Publisher
Springer Science and Business Media LLC
Citation
Xue, Mantian, Mackin, Charles, Weng, Wei-Hung, Zhu, Jiadi, Luo, Yiyue et al. 2022. "Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing." Nature Communications, 13 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.