MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Under-ice acoustic navigation using real-time model-aided range estimation

Author(s)
Bhatt, EeShan C; Viquez, Oscar; Schmidt, Henrik
Thumbnail
DownloadPublished version (10.76Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:p> The long baseline (LBL) underwater navigation paradigm relies on the conversion of travel times into pseudoranges to trilaterate position. For real-time autonomous underwater vehicle (AUV) operations, this conversion assumes an isovelocity sound speed. For re-navigation, computationally and/or labor-intensive acoustic modeling may be employed to reduce uncertainty. This work demonstrates a real-time ray-based prediction of the effective sound speed along a path from source to receiver. This method was implemented for an AUV-LBL system in the Beaufort Sea in an ice-covered and a double-ducted propagation environment. Given the lack of Global Navigation Satellite Systems (GNSS) data throughout the vehicle's mission, the pseudorange performance is first evaluated on acoustic transmissions between GNSS-linked beacons. The mean real-time absolute range error between beacons is roughly 11 m at distances up to 3 km. A consistent overestimation in the real-time method provides insights for improved eigenray filtering by the number of bounces. An operationally equivalent pipeline is used to reposition the LBL beacons and re-navigate the AUV, using modeled, historical, and locally observed sound speed profiles. The best re-navigation error is 1.84 ± 2.19 m root mean square. The improved performance suggests that this approach extends the single meter accuracy of the deployed GNSS units into the water column. </jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/145518
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
The Journal of the Acoustical Society of America
Publisher
Acoustical Society of America (ASA)
Citation
Bhatt, EeShan C, Viquez, Oscar and Schmidt, Henrik. 2022. "Under-ice acoustic navigation using real-time model-aided range estimation." The Journal of the Acoustical Society of America, 151 (4).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.