Show simple item record

dc.contributor.authorArquilla, Katya
dc.contributor.authorWebb, Andrea K.
dc.contributor.authorAnderson, Allison P.
dc.date.accessioned2022-09-26T11:53:32Z
dc.date.available2022-09-26T11:53:32Z
dc.date.issued2022-09-17
dc.identifier.urihttps://hdl.handle.net/1721.1/145560
dc.description.abstractThe detection of psychological stress using the electrocardiogram (ECG) signal is most commonly based on the detection of the R peak&mdash;the most prominent part of the ECG waveform&mdash;and the heart rate variability (HRV) measurements derived from it. For stress detection algorithms focused on short-duration time windows, there is potential benefit in including HRV features derived from the detection of smaller peaks within the ECG waveform: the P, Q, S, and T waves. However, the potential drawback of using these small peaks is their smaller magnitude and subsequent susceptibility to noise, making them more difficult to reliably detect. In this work, we demonstrate the potential benefits of including smaller waves within binary stress classification using a pre-existing data set of ECG recordings from 57 participants (aged 18&ndash;40) with a self-reported fear of spiders during exposure to videos of spiders. We also present an analysis of the performance of an automated peak detection algorithm and the reliability of detection for each of the smaller parts of the ECG waveform. We compared two models, one with only R peak features and one with small peak features. They were similar in precision, recall, F1, area under ROC curve (AUC), and accuracy, with the greatest differences less than the standard deviations of each metric. There was a significant difference in the Akaike Information Criterion (AIC), which represented the information loss of the model. The inclusion of novel small peak features made the model <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.29</mn><mo>&times;</mo><msup><mn>10</mn><mn>28</mn></msup></mrow></semantics></math></inline-formula> times more probable to minimize the information loss, and the small peak features showed higher regression coefficients than the R peak features, indicating a stronger relationship with acute psychological stress. This difference and further analysis of the novel features suggest that small peak intervals could be indicative of independent processes within the heart, reflecting a psychophysiological response to stress that has not yet been leveraged in stress detection algorithms.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/s22187034en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleUtility of the Full ECG Waveform for Stress Classificationen_US
dc.typeArticleen_US
dc.identifier.citationSensors 22 (18): 7034 (2022)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-09-22T12:02:07Z
dspace.date.submission2022-09-22T12:02:07Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record