Show simple item record

dc.contributor.authorFroelicher, David
dc.contributor.authorTroncoso-Pastoriza, Juan R
dc.contributor.authorRaisaro, Jean Louis
dc.contributor.authorCuendet, Michel A
dc.contributor.authorSousa, Joao Sa
dc.contributor.authorCho, Hyunghoon
dc.contributor.authorBerger, Bonnie
dc.contributor.authorFellay, Jacques
dc.contributor.authorHubaux, Jean-Pierre
dc.date.accessioned2022-09-27T18:27:56Z
dc.date.available2022-09-27T18:27:56Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/145592
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty homomorphic encryption (MHE), enables privacy-preserving analyses of distributed datasets by yielding highly accurate results without revealing any intermediate data. We demonstrate the applicability of FAMHE to essential biomedical analysis tasks, including Kaplan-Meier survival analysis in oncology and genome-wide association studies in medical genetics. Using our system, we accurately and efficiently reproduce two published centralized studies in a federated setting, enabling biomedical insights that are not possible from individual institutions alone. Our work represents a necessary key step towards overcoming the privacy hurdle in enabling multi-centric scientific collaborations.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-021-25972-Yen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleTruly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryptionen_US
dc.typeArticleen_US
dc.identifier.citationFroelicher, David, Troncoso-Pastoriza, Juan R, Raisaro, Jean Louis, Cuendet, Michel A, Sousa, Joao Sa et al. 2021. "Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption." Nature Communications, 12 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-09-27T18:17:20Z
dspace.orderedauthorsFroelicher, D; Troncoso-Pastoriza, JR; Raisaro, JL; Cuendet, MA; Sousa, JS; Cho, H; Berger, B; Fellay, J; Hubaux, J-Pen_US
dspace.date.submission2022-09-27T18:17:22Z
mit.journal.volume12en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record