Show simple item record

dc.contributor.authorBerman, Robert J
dc.contributor.authorCollins, Tristan C
dc.contributor.authorPersson, Daniel
dc.date.accessioned2022-09-30T16:42:46Z
dc.date.available2022-09-30T16:42:46Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/145628
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>A central problem in any quantum theory of gravity is to explain the emergence of the classical spacetime geometry in some limit of a more fundamental, microscopic description of nature. The gauge/gravity-correspondence provides a framework in which this problem can, in principle, be addressed. This is a holographic correspondence which relates a supergravity theory in five-dimensional Anti-deSitter space to a strongly coupled superconformal gauge theory on its 4-dimensional flat Minkowski boundary. In particular, the classical geometry should therefore emerge from some quantum state of the dual gauge theory. Here we confirm this by showing how the classical metric emerges from a canonical state in the dual gauge theory. In particular, we obtain approximations to the Sasaki-Einstein metric underlying the supergravity geometry, in terms of an explicit integral formula involving the canonical quantum state in question. In the special case of toric quiver gauge theories we show that our results can be computationally simplified through a process of tropicalization.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-021-27951-9en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleEmergent Sasaki-Einstein geometry and AdS/CFTen_US
dc.typeArticleen_US
dc.identifier.citationBerman, Robert J, Collins, Tristan C and Persson, Daniel. 2022. "Emergent Sasaki-Einstein geometry and AdS/CFT." Nature Communications, 13 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-09-30T16:38:55Z
dspace.orderedauthorsBerman, RJ; Collins, TC; Persson, Den_US
dspace.date.submission2022-09-30T16:38:57Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record