MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Approximating the linear response of physical chaos

Author(s)
Śliwiak, Adam A.; Wang, Qiqi
Thumbnail
Download11071_2022_Article_7885.pdf (8.393Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Parametric derivatives of statistics are highly desired quantities in prediction, design optimization and uncertainty quantification. In the presence of chaos, the rigorous computation of these quantities is certainly possible, but mathematically complicated and computationally expensive. Based on Ruelle’s formalism, this paper shows that the sophisticated linear response algorithm can be dramatically simplified in higher-dimensional systems featuring statistical homogeneity in the physical space. We argue that the contribution of the SRB (Sinai–Ruelle–Bowen) measure gradient, which is an integral yet the most cumbersome part of the full algorithm, is negligible if the objective function is appropriately aligned with unstable manifolds. This abstract condition could potentially be satisfied by a vast family of real-world chaotic systems, regardless of the physical meaning and mathematical form of the objective function and perturbed parameter. We demonstrate several numerical examples that support these conclusions and that present the use and performance of a simplified linear response algorithm. In the numerical experiments, we consider physical models described by differential equations, including Lorenz 96 and Kuramoto–Sivashinsky.
Date issued
2022-09-27
URI
https://hdl.handle.net/1721.1/145639
Department
Massachusetts Institute of Technology. Center for Computational Science and Engineering; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Springer Netherlands
Citation
Śliwiak, Adam A. and Wang, Qiqi. 2022. "Approximating the linear response of physical chaos."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.