MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nematic bits and universal logic gates

Author(s)
Kos, Žiga; Dunkel, Jörn
Thumbnail
DownloadPublished version (2.202Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:p>Liquid crystals (LCs) can host robust topological defect structures that essentially determine their optical and elastic properties. Although recent experimental progress enables precise control over nematic LC defects, their practical potential for information storage and processing has yet to be explored. Here, we introduce the concept of nematic bits (nbits) by exploiting a quaternionic mapping from LC defects to the Poincaré-Bloch sphere. Through theory and simulations, we demonstrate how single-nbit operations can be implemented using electric fields, to construct LC analogs of Pauli, Hadamard, and other elementary logic gates. Using nematoelastic interactions, we show how four-nbit configurations can realize universal classical NOR and NAND gates. Last, we demonstrate the implementation of generalized logical functions that take values on the Poincaré-Bloch sphere. These results open a route toward the implementation of classical digital and nonclassical continuous computation strategies in topological soft matter systems.</jats:p>
Date issued
2022-08-19
URI
https://hdl.handle.net/1721.1/145669
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Kos, Žiga and Dunkel, Jörn. 2022. "Nematic bits and universal logic gates." Science Advances, 8 (33).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.