Show simple item record

dc.contributor.authorKim, Honesty
dc.contributor.authorSkinner, Dominic J
dc.contributor.authorGlass, David S
dc.contributor.authorHamby, Alexander E
dc.contributor.authorStuart, Bradey AR
dc.contributor.authorDunkel, Jörn
dc.contributor.authorRiedel-Kruse, Ingmar H
dc.date.accessioned2022-10-04T18:49:47Z
dc.date.available2022-10-04T18:49:47Z
dc.date.issued2022-08-11
dc.identifier.urihttps://hdl.handle.net/1721.1/145677
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Multicellular systems, from bacterial biofilms to human organs, form interfaces (or boundaries) between different cell collectives to spatially organize versatile functions<jats:sup>1,2</jats:sup>. The evolution of sufficiently descriptive genetic toolkits probably triggered the explosion of complex multicellular life and patterning<jats:sup>3,4</jats:sup>. Synthetic biology aims to engineer multicellular systems for practical applications and to serve as a build-to-understand methodology for natural systems<jats:sup>5–8</jats:sup>. However, our ability to engineer multicellular interface patterns<jats:sup>2,9</jats:sup> is still very limited, as synthetic cell–cell adhesion toolkits and suitable patterning algorithms are underdeveloped<jats:sup>5,7,10–13</jats:sup>. Here we introduce a synthetic cell–cell adhesin logic with swarming bacteria and establish the precise engineering, predictive modelling and algorithmic programming of multicellular interface patterns. We demonstrate interface generation through a swarming adhesion mechanism, quantitative control over interface geometry and adhesion-mediated analogues of developmental organizers and morphogen fields. Using tiling and four-colour-mapping concepts, we identify algorithms for creating universal target patterns. This synthetic 4-bit adhesion logic advances practical applications such as human-readable molecular diagnostics, spatial fluid control on biological surfaces and programmable self-growing materials<jats:sup>5–8,14</jats:sup>. Notably, a minimal set of just four adhesins represents 4 bits of information that suffice to program universal tessellation patterns, implying a low critical threshold for the evolution and engineering of complex multicellular systems<jats:sup>3,5</jats:sup>.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41586-022-04944-2en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.title4-bit adhesion logic enables universal multicellular interface patterningen_US
dc.typeArticleen_US
dc.identifier.citationKim, Honesty, Skinner, Dominic J, Glass, David S, Hamby, Alexander E, Stuart, Bradey AR et al. 2022. "4-bit adhesion logic enables universal multicellular interface patterning." Nature, 608 (7922).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalNatureen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-04T18:10:35Z
dspace.orderedauthorsKim, H; Skinner, DJ; Glass, DS; Hamby, AE; Stuart, BAR; Dunkel, J; Riedel-Kruse, IHen_US
dspace.date.submission2022-10-04T18:10:39Z
mit.journal.volume608en_US
mit.journal.issue7922en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record