MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Peptide‐Based Cancer Vaccine Delivery via the STINGΔTM‐cGAMP Complex

Author(s)
He, Yanpu; Hong, Celestine; Fletcher, Samantha J; Berger, Adam G; Sun, Xin; Yang, Mengdi; Huang, Shengnan; Belcher, Angela M; Irvine, Darrell J; Li, Jiahe; Hammond, Paula T; ... Show more Show less
Thumbnail
DownloadPublished version (1.940Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
With the advent of bioinformatic tools in efficiently predicting neo-antigens, peptide vaccines have gained tremendous attention in cancer immunotherapy. However, the delivery of peptide vaccines remains a major challenge, primarily due to ineffective transport to lymph nodes and low immunogenicity. Here, a strategy for peptide vaccine delivery is reported by first fusing the peptide to the cytosolic domain of the stimulator of interferon genes protein (STINGΔTM), then complexing the peptide-STINGΔTM protein with STING agonist 2'3' cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). The process results in the formation of self-assembled cGAMP-peptide-STINGΔTM tetramers, which enables efficient lymphatic trafficking of the peptide. Moreover, the cGAMP-STINGΔTM complex acts not only as a protein carrier for the peptide, but also as a potent adjuvant capable of triggering STING signaling independent of endogenous STING protein-an especially important attribute considering that certain cancer cells epigenetically silence their endogenous STING expression. With model antigen SIINFEKL, it is demonstrated that the platform elicits effective STING signaling in vitro, draining lymph node targeting in vivo, effective T cell priming in vivo as well as antitumoral immune response in a mouse colon carcinoma model, providing a versatile solution to the challenges faced in peptide vaccine delivery.
Date issued
2022-08
URI
https://hdl.handle.net/1721.1/145708
Department
Koch Institute for Integrative Cancer Research at MIT; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Advanced Healthcare Materials
Publisher
Wiley
Citation
He, Yanpu, Hong, Celestine, Fletcher, Samantha J, Berger, Adam G, Sun, Xin et al. 2022. "Peptide‐Based Cancer Vaccine Delivery via the STINGΔTM‐cGAMP Complex." Advanced Healthcare Materials, 11 (15).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.