MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Invariant Hermitian forms on vertex algebras

Author(s)
Kac, Victor G; Frajria, Pierluigi Möseneder; Papi, Paolo
Thumbnail
DownloadAccepted version (393.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:p> We study invariant Hermitian forms on a conformal vertex algebra and on their (twisted) modules. We establish existence of a non-zero invariant Hermitian form on an arbitrary [Formula: see text]-algebra. We show that for a minimal simple [Formula: see text]-algebra [Formula: see text] this form can be unitary only when its [Formula: see text]-grading is compatible with parity, unless [Formula: see text] “collapses” to its affine subalgebra. </jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/145719
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Communications in Contemporary Mathematics
Publisher
World Scientific Pub Co Pte Ltd
Citation
Kac, Victor G, Frajria, Pierluigi Möseneder and Papi, Paolo. 2022. "Invariant Hermitian forms on vertex algebras." Communications in Contemporary Mathematics, 24 (05).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.