Show simple item record

dc.contributor.authorFomin, Sergey
dc.contributor.authorLusztig, George
dc.date.accessioned2022-10-07T17:13:01Z
dc.date.available2022-10-07T17:13:01Z
dc.date.issued2022-01-05
dc.identifier.urihttps://hdl.handle.net/1721.1/145770
dc.description.abstractLet G be a semisimple simply connected complex algebraic group. Let U be the unipotent radical of a Borel subgroup in G. We describe the coordinate rings of U (resp., G/U, G) in terms of two (resp., four, eight) birational charts introduced by Lusztig [Total positivity in reductive groups, Birkh¨auser Boston, Boston, MA, 1994; Bull. Inst. Math. Sin. (N.S.) 14 (2019), pp. 403–459] in connection with the study of total positivity.en_US
dc.language.isoen
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionof10.1090/ert/592en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleCoordinate rings and birational chartsen_US
dc.typeArticleen_US
dc.identifier.citationFomin, Sergey and Lusztig, George. 2022. "Coordinate rings and birational charts." Representation Theory of the American Mathematical Society, 26 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalRepresentation Theory of the American Mathematical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-07T17:09:02Z
dspace.orderedauthorsFomin, S; Lusztig, Gen_US
dspace.date.submission2022-10-07T17:09:03Z
mit.journal.volume26en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record