Show simple item record

dc.contributor.authorLetizia, Marco
dc.contributor.authorLosapio, Gianvito
dc.contributor.authorRando, Marco
dc.contributor.authorGrosso, Gaia
dc.contributor.authorWulzer, Andrea
dc.contributor.authorPierini, Maurizio
dc.contributor.authorZanetti, Marco
dc.contributor.authorRosasco, Lorenzo
dc.date.accessioned2022-10-11T17:59:11Z
dc.date.available2022-10-11T17:59:11Z
dc.date.issued2022-10-05
dc.identifier.urihttps://hdl.handle.net/1721.1/145780
dc.description.abstractAbstract We present a machine learning approach for model-independent new physics searches. The corresponding algorithm is powered by recent large-scale implementations of kernel methods, nonparametric learning algorithms that can approximate any continuous function given enough data. Based on the original proposal by D’Agnolo and Wulzer (Phys Rev D 99(1):015014, 2019, arXiv:1806.02350 [hep-ph]), the model evaluates the compatibility between experimental data and a reference model, by implementing a hypothesis testing procedure based on the likelihood ratio. Model-independence is enforced by avoiding any prior assumption about the presence or shape of new physics components in the measurements. We show that our approach has dramatic advantages compared to neural network implementations in terms of training times and computational resources, while maintaining comparable performances. In particular, we conduct our tests on higher dimensional datasets, a step forward with respect to previous studies.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjc/s10052-022-10830-yen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleLearning new physics efficiently with nonparametric methodsen_US
dc.typeArticleen_US
dc.identifier.citationThe European Physical Journal C. 2022 Oct 05;82(10):879en_US
dc.contributor.departmentCenter for Brains, Minds, and Machines
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-09T03:11:48Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-10-09T03:11:48Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record