MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inverse design in nanoscale heat transport via interpolating interfacial phonon transmission

Author(s)
Johnson, Steven G.; romano, Giuseppe
Thumbnail
Download158_2022_Article_3392.pdf (2.740Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract We introduce a methodology for density-based topology optimization of non-Fourier thermal transport in nanostructures, based upon adjoint-based sensitivity analysis of the phonon Boltzmann transport equation (BTE) and a novel material interpolation technique, the “transmission interpolation model” (TIM). The key challenge in BTE optimization is handling the interplay between real- and momentum-resolved material properties. By parameterizing the material density with an interfacial transmission coefficient, TIM is able to recover the hard-wall and no-interface limits, while guaranteeing a smooth transition between void and solid regions. We first use our approach to tailor the effective thermal conductivity tensor of a periodic nanomaterial; then, we maximize classical phonon size effects under constrained diffusive transport, identifying a promising new thermoelectric material design. Our method enables the systematic optimization of materials for heat management and conversion and, more broadly, the design of devices where diffusive transport is not valid.
Date issued
2022-10-06
URI
https://hdl.handle.net/1721.1/145782
Department
Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies; Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Structural and Multidisciplinary Optimization. 2022 Oct 06;65(10):297
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.