Show simple item record

dc.contributor.authorde Cataldo, Mark
dc.contributor.authorMaulik, Davesh
dc.contributor.authorShen, Junliang
dc.date.accessioned2022-10-12T14:06:02Z
dc.date.available2022-10-12T14:06:02Z
dc.date.issued2021-11-02
dc.identifier.urihttps://hdl.handle.net/1721.1/145788
dc.description.abstract<p>We study the topology of Hitchin fibrations via abelian surfaces. We establish the P=W conjecture for genus <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> curves and arbitrary rank. In higher genus and arbitrary rank, we prove that P=W holds for the subalgebra of cohomology generated by even tautological classes. Furthermore, we show that all tautological generators lie in the correct pieces of the perverse filtration as predicted by the P=W conjecture. In combination with recent work of Mellit, this reduces the full conjecture to the multiplicativity of the perverse filtration.</p> <p>Our main technique is to study the Hitchin fibration as a degeneration of the Hilbert–Chow morphism associated with the moduli space of certain torsion sheaves on an abelian surface, where the symmetries induced by Markman’s monodromy operators play a crucial role.</p>en_US
dc.language.isoen
dc.publisherAmerican Mathematical Society (AMS)en_US
dc.relation.isversionof10.1090/jams/989en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Mathematical Societyen_US
dc.titleHitchin fibrations, abelian surfaces, and the P=W conjectureen_US
dc.typeArticleen_US
dc.identifier.citationde Cataldo, Mark, Maulik, Davesh and Shen, Junliang. 2021. "Hitchin fibrations, abelian surfaces, and the P=W conjecture." Journal of the American Mathematical Society, 35 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalJournal of the American Mathematical Societyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-12T13:57:02Z
dspace.orderedauthorsde Cataldo, M; Maulik, D; Shen, Jen_US
dspace.date.submission2022-10-12T13:57:03Z
mit.journal.volume35en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record