dc.contributor.author | Neguț, Andrei | |
dc.date.accessioned | 2022-10-13T13:53:46Z | |
dc.date.available | 2022-10-13T13:53:46Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/145817 | |
dc.description.abstract | <jats:title>Abstract</jats:title>
<jats:p>We define slope subalgebras in the shuffle algebra associated to a (doubled) quiver, thus yielding a factorization of the universal <jats:italic>R</jats:italic>-matrix of the double of the shuffle algebra in question. We conjecture that this factorization matches the one defined by [1, 18, 32, 33, 34] using Nakajima quiver varieties.</jats:p> | en_US |
dc.language.iso | en | |
dc.publisher | Cambridge University Press (CUP) | en_US |
dc.relation.isversionof | 10.1017/S1474748022000184 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | SHUFFLE ALGEBRAS FOR QUIVERS AND R -MATRICES | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Neguț, Andrei. 2022. "SHUFFLE ALGEBRAS FOR QUIVERS AND R -MATRICES." Journal of the Institute of Mathematics of Jussieu. | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | Journal of the Institute of Mathematics of Jussieu | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-10-13T13:42:56Z | |
dspace.orderedauthors | Neguț, A | en_US |
dspace.date.submission | 2022-10-13T13:42:57Z | |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |