Show simple item record

dc.contributor.authorJanda, Felix
dc.contributor.authorPixton, Aaron
dc.date.accessioned2022-10-14T15:02:10Z
dc.date.available2022-10-14T15:02:10Z
dc.date.issued2019
dc.identifier.urihttps://hdl.handle.net/1721.1/145828
dc.description.abstract<jats:p>We study some aspects of the $\lambda_g$ pairing on the tautological ring of $M_g^c$, the moduli space of genus $g$ stable curves of compact type. We consider pairing kappa classes with pure boundary strata, all tautological classes supported on the boundary, or the full tautological ring. We prove that the rank of this restricted pairing is equal in the first two cases and has an explicit formula in terms of partitions, while in the last case the rank increases by precisely the rank of the $\lambda_g\lambda_{g - 1}$ pairing on the tautological ring of $M_g$.</jats:p>en_US
dc.language.isoen
dc.publisherCentre pour la Communication Scientifique Directe (CCSD)en_US
dc.relation.isversionof10.46298/EPIGA.2019.VOLUME3.3784en_US
dc.rightsCreative Commons Attribution-ShareAlike 4.0 Internationalen_US
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/en_US
dc.sourceÉpijournal de Géométrie Algébriqueen_US
dc.titleSocle pairings on tautological ringsen_US
dc.typeArticleen_US
dc.identifier.citationJanda, Felix and Pixton, Aaron. 2019. "Socle pairings on tautological rings." Épijournal de Géométrie Algébrique, Volume 3.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalÉpijournal de Géométrie Algébriqueen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-14T14:50:18Z
dspace.orderedauthorsJanda, F; Pixton, Aen_US
dspace.date.submission2022-10-14T14:50:19Z
mit.journal.volumeVolume 3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record