MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lattices in Tate modules

Author(s)
Poonen, Bjorn; Rybakov, Sergey
Thumbnail
DownloadPublished version (647.4Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Refining a theorem of Zarhin, we prove that, given ag-dimensional abelian variety X and an endomorphism u of X,there exists a matrixA∈M2g(Z) such that each Tate module T X has a Z -basis on which the action of u is given by A, and similarly for the covariant Dieudonné module if over a perfect field of characteristic p.
Date issued
2021
URI
https://hdl.handle.net/1721.1/145829
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
Proceedings of the National Academy of Sciences
Citation
Poonen, Bjorn and Rybakov, Sergey. 2021. "Lattices in Tate modules." Proceedings of the National Academy of Sciences of the United States of America, 118 (49).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.