Show simple item record

dc.contributor.authorAbed Abud, A.
dc.contributor.authorAbi, B.
dc.contributor.authorAcciarri, R.
dc.contributor.authorAcero, M. A.
dc.contributor.authorAdames, M. R.
dc.contributor.authorAdamov, G.
dc.contributor.authorAdamowski, M.
dc.contributor.authorAdams, D.
dc.contributor.authorAdinolfi, M.
dc.contributor.authorAduszkiewicz, A.
dc.contributor.authorAguilar, J.
dc.contributor.authorAhmad, Z.
dc.contributor.authorAhmed, J.
dc.contributor.authorAimard, B.
dc.contributor.authorAli-Mohammadzadeh, B.
dc.contributor.authorAlion, T.
dc.contributor.authorAllison, K.
dc.contributor.authorAlonso Monsalve, S.
dc.contributor.authorAlRashed, M.
dc.contributor.authorAlt, C.
dc.date.accessioned2022-10-17T12:25:56Z
dc.date.available2022-10-17T12:25:56Z
dc.date.issued2022-10-12
dc.identifier.urihttps://hdl.handle.net/1721.1/145851
dc.description.abstractAbstract Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1140/epjc/s10052-022-10791-2en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleSeparation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural networken_US
dc.typeArticleen_US
dc.identifier.citationThe European Physical Journal C. 2022 Oct 12;82(10):903en_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-16T03:12:45Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-10-16T03:12:45Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record