Show simple item record

dc.contributor.authorAdžaga, Nikola
dc.contributor.authorChidambaram, Shiva
dc.contributor.authorKeller, Timo
dc.contributor.authorPadurariu, Oana
dc.date.accessioned2022-10-17T12:27:47Z
dc.date.available2022-10-17T12:27:47Z
dc.date.issued2022-10-12
dc.identifier.urihttps://hdl.handle.net/1721.1/145853
dc.description.abstractAbstract We complete the computation of all $$\mathbb {Q}$$ Q -rational points on all the 64 maximal Atkin-Lehner quotients $$X_0(N)^*$$ X 0 ( N ) ∗ such that the quotient is hyperelliptic. To achieve this, we use a combination of various methods, namely the classical Chabauty–Coleman, elliptic curve Chabauty, quadratic Chabauty, and the bielliptic quadratic Chabauty method (from a forthcoming preprint of the fourth-named author) combined with the Mordell-Weil sieve. Additionally, for square-free levels N, we classify all $$\mathbb {Q}$$ Q -rational points as cusps, CM points (including their CM field and j-invariants) and exceptional ones. We further indicate how to use this to compute the $$\mathbb {Q}$$ Q -rational points on all of their modular coverings.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s40993-022-00388-9en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.titleRational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coveringsen_US
dc.typeArticleen_US
dc.identifier.citationResearch in Number Theory. 2022 Oct 12;8(4):87en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-16T03:12:56Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-10-16T03:12:56Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record