MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient arithmetic regularity and removal lemmas for induced bipartite patterns

Author(s)
Alon, Noga; Fox, Jacob; Zhao, Yufei
Thumbnail
DownloadPublished version (298.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Let $G$ be an abelian group of bounded exponent and $A \subseteq G$. We show that if the collection of translates of $A$ has VC dimension at most $d$, then for every $\epsilon>0$ there is a subgroup $H$ of $G$ of index at most $\epsilon^{-d-o(1)}$ such that one can add or delete at most $\epsilon|G|$ elements to/from $A$ to make it a union of $H$-cosets. We also establish a removal lemma with polynomial bounds, with applications to property testing, for induced bipartite patterns in a finite abelian group with bounded exponent.
Date issued
2019-04-12
URI
https://hdl.handle.net/1721.1/145887
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Discrete Analysis 2019:3, 14 pp
Publisher
Alliance of Diamond Open Access Journals
Citation
Alon, Noga, Fox, Jacob and Zhao, Yufei. 2019. "Efficient arithmetic regularity and removal lemmas for induced bipartite patterns." Discrete Analysis 2019:3, 14 pp, 2019 (03).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.