MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Testing Linear-Invariant Properties

Author(s)
Tidor, Jonathan; Zhao, Yufei
Thumbnail
DownloadPublished version (734.8Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Fix a prime $p$ and a positive integer $R$. We study the property testing of functions $\mathbb F_p^n\to[R]$. We say that a property is testable if there exists an oblivious tester for this property with one-sided error and constant query complexity. Furthermore, a property is proximity oblivious-testable (PO-testable) if the test is also independent of the proximity parameter $\epsilon$. It is known that a number of natural properties such as linearity and being a low degree polynomial are PO-testable. These properties are examples of linear-invariant properties, meaning that they are preserved under linear automorphisms of the domain. Following work of Kaufman and Sudan, the study of linear-invariant properties has been an important problem in arithmetic property testing. A central conjecture in this field, proposed by Bhattacharyya, Grigorescu, and Shapira, is that a linear-invariant property is testable if and only if it is semi subspace-hereditary. We prove two results, the first resolves this conjecture and the second classifies PO-testable properties. (1) A linear-invariant property is testable if and only if it is semi subspace-hereditary. (2) A linear-invariant property is PO-testable if and only if it is locally characterized. Our innovations are two-fold. We give a more powerful version of the compactness argument first introduced by Alon and Shapira. This relies on a new strong arithmetic regularity lemma in which one mixes different levels of Gowers uniformity. This allows us to extend the work of Bhattacharyya, Fischer, Hatami, Hatami, and Lovett by removing the bounded complexity restriction in their work. Our second innovation is a novel recoloring technique called patching. This Ramsey-theoretic technique is critical for working in the linear-invariant setting and allows us to remove the translation-invariant restriction present in previous work.
Date issued
2022-08
URI
https://hdl.handle.net/1721.1/145888
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
SIAM Journal on Computing
Publisher
Society for Industrial & Applied Mathematics (SIAM)
Citation
Tidor, Jonathan and Zhao, Yufei. 2022. "Testing Linear-Invariant Properties." SIAM Journal on Computing, 51 (4).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.