Show simple item record

dc.contributor.authorZhao, Yufei
dc.date.accessioned2022-10-18T17:18:13Z
dc.date.available2022-10-18T17:18:13Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/145895
dc.description.abstractHow should we place $n$ great circles on a sphere to minimize the furthest distance between a point on the sphere and its nearest great circle? Fejes T\'oth conjectured that the optimum is attained by placing $n$ circles evenly spaced all passing through the north and south poles. This conjecture was recently proved by Jiang and Polyanskii. We present a short simplification of Ortega-Moreno's alternate proof of this conjecture.en_US
dc.language.isoen
dc.publisherInforma UK Limiteden_US
dc.relation.isversionof10.1080/00029890.2022.2071569en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleExploring a Planet, Revisiteden_US
dc.typeArticleen_US
dc.identifier.citationZhao, Yufei. 2022. "Exploring a Planet, Revisited." American Mathematical Monthly, 129 (7).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalAmerican Mathematical Monthlyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-18T17:13:32Z
dspace.orderedauthorsZhao, Yen_US
dspace.date.submission2022-10-18T17:13:33Z
mit.journal.volume129en_US
mit.journal.issue7en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record