| dc.contributor.author | Zhao, Yufei | |
| dc.date.accessioned | 2022-10-18T17:18:13Z | |
| dc.date.available | 2022-10-18T17:18:13Z | |
| dc.date.issued | 2022 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/145895 | |
| dc.description.abstract | How should we place $n$ great circles on a sphere to minimize the furthest
distance between a point on the sphere and its nearest great circle? Fejes
T\'oth conjectured that the optimum is attained by placing $n$ circles evenly
spaced all passing through the north and south poles. This conjecture was
recently proved by Jiang and Polyanskii. We present a short simplification of
Ortega-Moreno's alternate proof of this conjecture. | en_US |
| dc.language.iso | en | |
| dc.publisher | Informa UK Limited | en_US |
| dc.relation.isversionof | 10.1080/00029890.2022.2071569 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | arXiv | en_US |
| dc.title | Exploring a Planet, Revisited | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Zhao, Yufei. 2022. "Exploring a Planet, Revisited." American Mathematical Monthly, 129 (7). | |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.relation.journal | American Mathematical Monthly | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2022-10-18T17:13:32Z | |
| dspace.orderedauthors | Zhao, Y | en_US |
| dspace.date.submission | 2022-10-18T17:13:33Z | |
| mit.journal.volume | 129 | en_US |
| mit.journal.issue | 7 | en_US |
| mit.license | OPEN_ACCESS_POLICY | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |