MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermodynamics of free and bound magnons in graphene

Author(s)
Pierce, Andrew T; Xie, Yonglong; Lee, Seung Hwan; Forrester, Patrick R; Wei, Di S; Watanabe, Kenji; Taniguchi, Takashi; Halperin, Bertrand I; Yacoby, Amir; ... Show more Show less
Thumbnail
DownloadPublished version (4.495Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Symmetry-broken electronic phases support neutral collective excitations. For example, monolayer graphene in the quantum Hall regime hosts a nearly ideal ferromagnetic phase at specific filling factors that spontaneously breaks the spin-rotation symmetry<jats:sup>1–3</jats:sup>. This ferromagnet has been shown to support spin-wave excitations known as magnons that can be electrically generated and detected<jats:sup>4,5</jats:sup>. Although long-distance magnon propagation has been demonstrated via transport measurements, important thermodynamic properties of such magnon populations—including the magnon chemical potential and density—have not been measured. Here we present local measurements of electron compressibility under the influence of magnons, which reveal a reduction in the gap associated with the <jats:italic>ν</jats:italic> = 1 quantum Hall state by up to 20%. Combining these measurements with the estimates of temperature, our analysis reveals that the injected magnons bind to electrons and holes to form skyrmions, and it enables the extraction of free magnon density, magnon chemical potential and average skyrmion spin. Our methods provide a means of probing the thermodynamic properties of charge-neutral excitations that are applicable to other symmetry-broken electronic phases.</jats:p>
Date issued
2022-01
URI
https://hdl.handle.net/1721.1/145990
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Nature Physics
Publisher
Springer Science and Business Media LLC
Citation
Pierce, Andrew T, Xie, Yonglong, Lee, Seung Hwan, Forrester, Patrick R, Wei, Di S et al. 2022. "Thermodynamics of free and bound magnons in graphene." Nature Physics, 18 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.