MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diverse Polarimetric Features of AGN Jets from Various Viewing Angles: Towards a Unified View

Author(s)
Tsunetoe, Yuh; Mineshige, Shin; Kawashima, Tomohisa; Ohsuga, Ken; Akiyama, Kazunori; Takahashi, Hiroyuki R.; ... Show more Show less
Thumbnail
Downloadgalaxies-10-00103.pdf (2.645Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Here, we demonstrate that polarization properties show a wide diversity depending on viewing angles. To simulate images of a supermassive black hole and surrounding plasma, we performed a full-polarimetric general relativistic radiative transfer based on three-dimensional general relativistic magnetohydrodynamics models with moderate magnetic strengths. Under an assumption of a hot-jet and cold-disk in the electron temperature prescription, we confirmed a typical scenario where polarized synchrotron emissions from the funnel jet experience Faraday rotation and conversion in the equatorial disk. Further, we found that linear polarization vectors are inevitably depolarized for edge-on-like observers, whereas a portion of vectors survive and reach the observers in face-on-like cases. We also found that circular polarization components have persistent signs in the face-on cases, and changing signs in the edge-on cases. It is confirmed that these features are smoothly connected via intermediate viewing-angle cases. These results are due to Faraday rotation/conversion for different viewing angles, and suggest that a combination of linear and circular polarimetry can give a constraint on the inclination between the observer and black hole’s (and/or disk’s) rotating-axis and plasma properties in the jet–disk structure. These can also lead to a more statistical and unified interpretation for a diversity of emissions from active galactic nuclei.
Date issued
2022-10-21
URI
https://hdl.handle.net/1721.1/145996
Department
Haystack Observatory
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Galaxies 10 (5): 103 (2022)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.