Show simple item record

dc.contributor.authorSarmadi, Morteza
dc.contributor.authorTa, Christina
dc.contributor.authorVanLonkhuyzen, Abigail M
dc.contributor.authorDe Fiesta, Dominique C
dc.contributor.authorKanelli, Maria
dc.contributor.authorSadeghi, Ilin
dc.contributor.authorBehrens, Adam M
dc.contributor.authorIngalls, Bailey
dc.contributor.authorMenon, Nandita
dc.contributor.authorDaristotle, John L
dc.contributor.authorYu, Julie
dc.contributor.authorLanger, Robert
dc.contributor.authorJaklenec, Ana
dc.date.accessioned2022-10-28T16:51:16Z
dc.date.available2022-10-28T16:51:16Z
dc.date.issued2022-07-15
dc.identifier.urihttps://hdl.handle.net/1721.1/146041
dc.description.abstract<jats:p>Next-generation therapeutics require advanced drug delivery platforms with precise control over morphology and release kinetics. A recently developed microfabrication technique enables fabrication of a new class of injectable microparticles with a hollow core-shell structure that displays pulsatile release kinetics, providing such capabilities. Here, we study this technology and the resulting core-shell microstructures. We demonstrated that pulsatile release is governed by a sudden increase in porosity of the polymeric matrix, leading to the formation of a porous path connecting the core to the environment. Moreover, the release kinetics within the range studied remained primarily independent of the particle geometry but highly dependent on its composition. A qualitative technique was developed to study the pattern of pH evolution in the particles. A computational model successfully modeled deformations, indicating sudden expansion of the particle before onset of release. Results of this study contribute to the understanding and design of advanced drug delivery systems.</jats:p>en_US
dc.language.isoen
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionof10.1126/sciadv.abn5315en_US
dc.rightsCreative Commons Attribution NonCommercial License 4.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceScience Advancesen_US
dc.titleExperimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticlesen_US
dc.typeArticleen_US
dc.identifier.citationSarmadi, Morteza, Ta, Christina, VanLonkhuyzen, Abigail M, De Fiesta, Dominique C, Kanelli, Maria et al. 2022. "Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles." Science Advances, 8 (28).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MIT
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Science
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-28T13:55:02Z
dspace.orderedauthorsSarmadi, M; Ta, C; VanLonkhuyzen, AM; De Fiesta, DC; Kanelli, M; Sadeghi, I; Behrens, AM; Ingalls, B; Menon, N; Daristotle, JL; Yu, J; Langer, R; Jaklenec, Aen_US
dspace.date.submission2022-10-28T13:55:07Z
mit.journal.volume8en_US
mit.journal.issue28en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record