Show simple item record

dc.contributor.authorRíos, Carlos
dc.contributor.authorDu, Qingyang
dc.contributor.authorZhang, Yifei
dc.contributor.authorPopescu, Cosmin-Constantin
dc.contributor.authorShalaginov, Mikhail Y.
dc.contributor.authorMiller, Paul
dc.contributor.authorRoberts, Christopher
dc.contributor.authorKang, Myungkoo
dc.contributor.authorRichardson, Kathleen A.
dc.contributor.authorGu, Tian
dc.contributor.authorVitale, Steven A.
dc.contributor.authorHu, Juejun
dc.date.accessioned2022-10-31T13:18:45Z
dc.date.available2022-10-31T13:18:45Z
dc.date.issued2022-10-26
dc.identifier.urihttps://hdl.handle.net/1721.1/146051
dc.description.abstractAbstract Optical phase shifters constitute the fundamental building blocks that enable programmable photonic integrated circuits (PICs)—the cornerstone of on-chip classical and quantum optical technologies [1, 2]. Thus far, carrier modulation and thermo-optical effect are the chosen phenomena for ultrafast and low-loss phase shifters, respectively; however, the state and information they carry are lost once the power is turned off—they are volatile. The volatility not only compromises energy efficiency due to their demand for constant power supply, but also precludes them from emerging applications such as in-memory computing. To circumvent this limitation, we introduce a phase shifting mechanism that exploits the nonvolatile refractive index modulation upon structural phase transition of Sb2Se3, a bi-state transparent phase change material (PCM). A zero-static power and electrically-driven phase shifter is realized on a CMOS-backend silicon-on-insulator platform, featuring record phase modulation up to 0.09 π/µm and a low insertion loss of 0.3 dB/π, which can be further improved upon streamlined design. Furthermore, we demonstrate phase and extinction ratio trimming of ring resonators and pioneer a one-step partial amorphization scheme to enhance speed and energy efficiency of PCM devices. A diverse cohort of programmable photonic devices is demonstrated based on the ultra-compact PCM phase shifter.en_US
dc.publisherSpringer Nature Singaporeen_US
dc.relation.isversionofhttps://doi.org/10.1186/s43074-022-00070-4en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Nature Singaporeen_US
dc.titleUltra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materialsen_US
dc.typeArticleen_US
dc.identifier.citationPhotoniX. 2022 Oct 26;3(1):26en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.contributor.departmentLincoln Laboratory
dc.contributor.departmentMIT Materials Research Laboratory
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-10-30T04:20:02Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-10-30T04:20:02Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record