Show simple item record

dc.contributor.authorVyas, Nikhil
dc.contributor.authorWilliams, R. R.
dc.date.accessioned2022-11-07T13:02:28Z
dc.date.available2022-11-07T13:02:28Z
dc.date.issued2022-11-04
dc.identifier.urihttps://hdl.handle.net/1721.1/146172
dc.description.abstractAbstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in Quasi - NP = NTIME [ n ( log n ) O ( 1 ) ] $\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$ and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes C $\mathcal { C}$ , by showing that C $\mathcal { C}$ admits non-trivial satisfiability and/or # SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial # SAT algorithm for a circuit class C ${\mathcal C}$ . Say that a symmetric Boolean function f(x1,…,xn) is sparse if it outputs 1 on O(1) values of ∑ i x i ${\sum }_{i} x_{i}$ . We show that for every sparse f, and for all “typical” C $\mathcal { C}$ , faster # SAT algorithms for C $\mathcal { C}$ circuits imply lower bounds against the circuit class f ∘ C $f \circ \mathcal { C}$ , which may be stronger than C $\mathcal { C}$ itself. In particular: # SAT algorithms for nk-size C $\mathcal { C}$ -circuits running in 2n/nk time (for all k) imply NEXP does not have ( f ∘ C ) $(f \circ \mathcal { C})$ -circuits of polynomial size. # SAT algorithms for 2 n ε $2^{n^{{\varepsilon }}}$ -size C $\mathcal { C}$ -circuits running in 2 n − n ε $2^{n-n^{{\varepsilon }}}$ time (for some ε > 0) imply Quasi-NP does not have ( f ∘ C ) $(f \circ \mathcal { C})$ -circuits of polynomial size. Applying # SAT algorithms from the literature, one immediate corollary of our results is that Quasi-NP does not have EMAJ ∘ ACC0 ∘ THR circuits of polynomial size, where EMAJ is the “exact majority” function, improving previous lower bounds against ACC0 [Williams JACM’14] and ACC0 ∘THR [Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00224-022-10106-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleLower Bounds Against Sparse Symmetric Functions of ACC Circuits: Expanding the Reach of #SAT Algorithmsen_US
dc.typeArticleen_US
dc.identifier.citationVyas, Nikhil and Williams, R. R. 2022. "Lower Bounds Against Sparse Symmetric Functions of ACC Circuits: Expanding the Reach of #SAT Algorithms."
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-11-06T04:14:19Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-11-06T04:14:19Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record