Show simple item record

dc.contributor.authorShanmugam, Divya
dc.contributor.authorDiaz, Fernando
dc.contributor.authorShabanian, Samira
dc.contributor.authorFinck, Michele
dc.contributor.authorBiega, Asia
dc.date.accessioned2022-11-10T18:48:19Z
dc.date.available2022-11-10T18:48:19Z
dc.date.issued2022-06-21
dc.identifier.isbn978-1-4503-9352-2
dc.identifier.urihttps://hdl.handle.net/1721.1/146342
dc.publisherACM|2022 ACM Conference on Fairness, Accountability, and Transparencyen_US
dc.relation.isversionofhttps://doi.org/10.1145/3531146.3533148en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceACM|2022 ACM Conference on Fairness, Accountability, and Transparencyen_US
dc.titleLearning to Limit Data Collection via Scaling Laws: A Computational Interpretation for the Legal Principle of Data Minimizationen_US
dc.typeArticleen_US
dc.identifier.citationShanmugam, Divya, Diaz, Fernando, Shabanian, Samira, Finck, Michele and Biega, Asia. 2022. "Learning to Limit Data Collection via Scaling Laws: A Computational Interpretation for the Legal Principle of Data Minimization."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-11-03T01:12:29Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2022-11-03T01:12:29Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record