Show simple item record

dc.contributor.authorYew, Rui-Jie
dc.contributor.authorHadfield-Menell, Dylan
dc.date.accessioned2022-11-15T15:25:37Z
dc.date.available2022-11-15T15:25:37Z
dc.date.issued2022-07-26
dc.identifier.isbn978-1-4503-9247-1
dc.identifier.urihttps://hdl.handle.net/1721.1/146443
dc.publisherACM|Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Societyen_US
dc.relation.isversionofhttps://doi.org/10.1145/3514094.3534130en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceACM|Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Societyen_US
dc.titleA Penalty Default Approach to Preemptive Harm Disclosure and Mitigation for AI Systemsen_US
dc.typeArticleen_US
dc.identifier.citationYew, Rui-Jie and Hadfield-Menell, Dylan. 2022. "A Penalty Default Approach to Preemptive Harm Disclosure and Mitigation for AI Systems."
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-11-03T12:18:52Z
dc.language.rfc3066en
dc.rights.holderThe author(s)
dspace.date.submission2022-11-03T12:18:53Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record