MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Atomic Stress Fields using Cycle-Consistent Adversarial Neural Networks based on Unpaired and Unmatched Sparse Datasets

Author(s)
Buehler, Markus J
Thumbnail
DownloadPublished version (9.014Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 3.0 https://creativecommons.org/licenses/by-nc/3.0/
Metadata
Show full item record
Abstract
<jats:p>Deep learning holds great promise for applications in materials science, including the discovery of physical laws and materials design.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/146552
Department
Massachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics; Massachusetts Institute of Technology. Center for Computational Science and Engineering
Journal
Materials Advances
Publisher
Royal Society of Chemistry (RSC)
Citation
Buehler, Markus J. 2022. "Prediction of Atomic Stress Fields using Cycle-Consistent Adversarial Neural Networks based on Unpaired and Unmatched Sparse Datasets." Materials Advances, 3 (15).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.