Show simple item record

dc.contributor.authorGuo, Kai
dc.contributor.authorBuehler, Markus J
dc.date.accessioned2022-11-18T19:42:09Z
dc.date.available2022-11-18T19:42:09Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/146553
dc.description.abstract<jats:p>We present a computational framework based on graph neural networks (GNNs) to predict the natural frequencies of proteins from primary amino acid sequences and contact/distance maps.</jats:p>en_US
dc.language.isoen
dc.publisherRoyal Society of Chemistry (RSC)en_US
dc.relation.isversionof10.1039/D1DD00007Aen_US
dc.rightsCreative Commons Attribution NonCommercial License 3.0en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistry (RSC)en_US
dc.titleRapid prediction of protein natural frequencies using graph neural networksen_US
dc.typeArticleen_US
dc.identifier.citationGuo, Kai and Buehler, Markus J. 2022. "Rapid prediction of protein natural frequencies using graph neural networks." Digital Discovery, 1 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Science and Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Center for Materials Science and Engineering
dc.relation.journalDigital Discoveryen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-11-18T19:38:30Z
dspace.orderedauthorsGuo, K; Buehler, MJen_US
dspace.date.submission2022-11-18T19:38:31Z
mit.journal.volume1en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record