MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigating and modeling the dynamics of long ties

Author(s)
Lyu, Ding; Yuan, Yuan; Wang, Lin; Wang, Xiaofan; Pentland, Alex
Thumbnail
DownloadPublished version (909.2Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Long ties, the social ties that bridge different communities, are widely believed to play crucial roles in spreading novel information in social networks. However, some existing network theories and prediction models indicate that long ties might dissolve quickly or eventually become redundant, thus putting into question the long-term value of long ties. Our empirical analysis of real-world dynamic networks shows that contrary to such reasoning, long ties are more likely to persist than other social ties, and that many of them constantly function as social bridges without being embedded in local networks. Using a cost-benefit analysis model combined with machine learning, we show that long ties are highly beneficial, which instinctively motivates people to expend extra effort to maintain them. This partly explains why long ties are more persistent than what has been suggested by many existing theories and models. Overall, our study suggests the need for social interventions that can promote the formation of long ties, such as mixing people with diverse backgrounds.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/146597
Department
MIT Connection Science (Research institute); Massachusetts Institute of Technology. Media Laboratory
Journal
Communications Physics
Publisher
Springer Science and Business Media LLC
Citation
Lyu, Ding, Yuan, Yuan, Wang, Lin, Wang, Xiaofan and Pentland, Alex. 2022. "Investigating and modeling the dynamics of long ties." Communications Physics, 5 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.