MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low-Photon Counts Coherent Modulation Imaging via Generalized Alternating Projection Algorithm

Author(s)
Sun, Meng; Liu, Tao; Barbastathis, George; Qi, Yincheng; Zhang, Fucai
Thumbnail
Downloadapplsci-12-11436.pdf (4.692Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Phase contrast imaging is advantageous for mitigating radiation damage to samples, such as biological specimens. For imaging at nanometer or atomic resolution, the required flux on samples increases dramatically and can easily exceed the sample damage threshold. Coherent modulation imaging (CMI) can provide quantitative absorption and phase images of samples at diffraction-limited resolution with fast convergence. When used for radiation-sensitive samples, CMI experiments need to be conducted under low illumination flux for high resolution. Here, an algorithmic framework is proposed for CMI involving generalized alternating projection and total variation constraint. A five-to-ten-fold lower photon requirement can be achieved for near-field or far-field experiment dataset. The work would make CMI more applicable to the dynamics study of radiation-sensitive samples.
Date issued
2022-11-11
URI
https://hdl.handle.net/1721.1/146616
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Singapore-MIT Alliance in Research and Technology (SMART)
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Applied Sciences 12 (22): 11436 (2022)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.